If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35x^2+6x-9=0
a = 35; b = 6; c = -9;
Δ = b2-4ac
Δ = 62-4·35·(-9)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-36}{2*35}=\frac{-42}{70} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+36}{2*35}=\frac{30}{70} =3/7 $
| p2-13=-5 | | -1=0x+5 | | -18=6(x-10( | | 81n2+33=42 | | 3=7/2x-1/2x+5 | | 36n2-24=-15 | | 2y+7=12-4y | | 20x-1+4x+13=180 | | 9v-26=v-2 | | -5(1+11x)+6(1+9x)=-8-x | | 3^x+1=18 | | 2x+1+39=190 | | 7u+3=2u+18 | | -2(x+7)+4x=4(x+9) | | 18x-35=26x-113 | | 14/4b+4.76=18.76 | | 17x^2-17x+10=0 | | x=√3x+300 | | 2p=1+7 | | √3x+300=x | | K18=42+5y | | 1.2y+1.2=2.4 | | 2t+2.5=10.75 | | 28x+3=26x-19 | | .4x-0.8(x-4)=1.3x-1.9 | | 2(10-7n)+5n=-(8n-10) | | 23=18v=-21+14v | | 164=25-u | | 18-3x=24-9x | | 4/10h+170/100=77 | | 5=85x | | 8-(x+13)=25 |